B20106 |
表沒(méi)食子兒茶素沒(méi)食子酸酯 |
源葉 | 分析標(biāo)準(zhǔn)品,HPLC≥98% |
- 熔點(diǎn): 222-224°C
- 沸點(diǎn): 909.1°C at 760 mmHg
- 比旋光度: D -185 ±2°(ethanol)
- 外觀: 白色至淡粉色粉末
- 溶解性: 易溶于水。
- 儲(chǔ)存條件: 2-8℃
- 注意:部分產(chǎn)品我司僅能提供部分信息,我司不保證所提供信息的權(quán)威性,僅供客戶參考交流研究之用。
- 250. [IF=4.6] Guo Jing et al."The roles of theaflavins in reducing dentin erosion."Scientific Reports.2023 Jun;13(1):1-11
- 244. [IF=5.561] Zihao Qiu et al."The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong."Foods.2023 Jan;12(10):2067
- 204. [IF=5.561] Jiazheng Lin et al."Effect of the Presence of Stem on Quality of Oolong Tea."Foods.2022 Jan;11(21):3439
- 162. [IF=2.863] Penghui Yu et al."Distinct variation in taste quality of Congou black tea during a single spring season."Food Sci Nutr. 2020 Apr;8(4):1848-1856
- 142. [IF=4.952] Xujie Wang et al."Preparation, characterization and activity of tea polyphenols-zinc complex."Lwt Food Sci Technol. 2020 Sep;131:109810
- 124. [IF=6.953] Chao Jiang et al."Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch."Int J Biol Macromol. 2021 Mar;172:503
- 109. [IF=7.514] Wenyang Tao et al."Extraction and identification of proanthocyanidins from the leaves of persimmon and loquat."Food Chem. 2022 Mar;372:130780
- 70. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
- 69. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
- 68. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
- 67. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039
- 66. Xiang, X., Xiang, Y., Jin, S., Wang, Z., Xu, Y., Su, C., Shi, Q., Chen, C., Yu, Q. and Song, C. (2020), The hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced diabetic mice and their active components characterized by
- 65. Yu, Penghui, et al. "Distinct variation in taste quality of Congou black tea during a single spring season." Food science & nutrition 8.4 (2020): 1848-1856.https://doi.org/10.1002/fsn3.1467
- 64. Pei Pu, Xin Zheng, Linna Jiao, Lang Chen, Han Yang, Yonghong Zhang, Guizhao Liang, Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study, Food Chemistry, Volume 339, 2021, 128106
- 63. Liu, Shuyuan, et al. "In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea."?BMC complementary and alternative medicine?16.1 (2016): 1-8.
- 62. Liao, Yinyin, et al. "Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves." Journal of agricultural and food chemistry 67.24 (2019): 6716-6724.https://doi.org/10.1021/acs.j
- 61. Hua, Jinjie, et al. "Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation."?LWT?139 (2021): 110291.https://doi.org/10.1016/j.lwt.2020.110291
- 60. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039
- 59. Ge, Zhenzhen, et al. "Comparison of the inhibition on cellular 22-NBD-cholesterol accumulation and transportation of monomeric catechins and their corresponding A-type dimers in Caco-2 cell monolayers." Journal of Functional Foods 27 (2016): 343-351.https:
- 58. Zhang, Ying, et al. "Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II." Fitoterapia 92 (2014): 61-71.https://doi.org/10.1016/j.fitote.2013.10.001
- 57. Chen, Weijun, et al. "Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity." Journal of food science 84.1 (2019): 111-120.https://doi.org/10.1111/1750-3841.14405
- 56. Huang, Haojia, et al. "Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro." Experimental and therapeutic medicine 9.1 (2015): 213-218. https://doi.org/10.3892/etm.2014.2057
- 55. Jin, Pan, et al. "Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study." Cell & Tissue Research 356.2 (2014).
- 54. Zhu, Tian-Tian, et al. "Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion." European journal of pharmacology 809 (2017): 42-51.https://doi.org/10.1016/j.ejphar.2017.0
- 53. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418
- 52. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418
- 51. Zou, Mingming, et al. "Evaluation of antimicrobial and antibiofilm properties of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves against Staphylococcus epidermidis." Food science & nutrition 8.1 (2020): 139-149.https://doi.org/
- 50. Jia, Longgang, et al. "General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein." ACS Applied Materials & Interfaces 12.28 (2020): 31182-31194.https://doi.org/10.1021/acsami.
- 49. Chang, Yifan, et al. "Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate." International Journal of Biological Macromolecules 159 (2020): 373-382.https://doi.org/10
- 48. Zhang, Xing, Hui He, and Tao Hou. "Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B." Food & function 11.4 (2020): 3563-3573.DOI: 10.1016/j.foodchem.2021.129888
- 47. Jin, P., Li, M., Xu, G., Zhang, K., Zheng, L., & Zhao, J. (2015). Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Corrigendum in /10.3892/etm.2021.9725. Experi
- 46. Chuang Zhu, Yan Xu, Zeng-Hui Liu, Xiao-Chun Wan, Da-Xiang Li, Ling-Ling Tai, The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice, Biomedicine & Pharmacotherapy, Volume 97, 2018, Pages 168-173, ISSN 0753-3322, https://do
- 45. Yang, Rui, et al. "Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro." RSC advances 6.42 (2016): 35267-35279.https://doi.org/10.1039/C6RA04058F
- 44. Chen, Yinxia, and Meihu Ma. "Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH." Food Hydrocolloids 102 (2020): 105568.https://doi.org/10.1016/j.foodhyd.2019.105568
- 43. Li, Wenfeng, Kun Zhang, and Qiang Zhao. "Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice." International journal of food sciences and nutrition 70.3 (2019): 311-322.https://doi.org/10.1080
- 42. 張恒,鄭俏然,何靖柳,韋婷,劉翔,章斌.藏茶玫瑰烏梅無(wú)糖復(fù)合飲料研制及功能性成分分析與抗氧化研究[J].食品科技,2021,46(01):46-53+61.
- 41. 姜麗娜,李紀(jì)元,范正琪,童冉,莫潤(rùn)宏,李志輝,蔣昌杰.金花茶組植物花朵內(nèi)多酚組分含量分析[J].林業(yè)科學(xué)研究,2020,33(04):117-126.
- 40. 劉行海,徐策,買(mǎi)文麗,鄭倩,劉華,劉紅.表沒(méi)食子兒茶素沒(méi)食子酸酯對(duì)2型糖尿病大鼠認(rèn)知功能的影響及其機(jī)制研究[J].川北醫(yī)學(xué)院學(xué)報(bào),2021,36(01):14-16.
- 39. 薛慶,童梁成,楊智偉,汪劍齡,趙磊,周勝,彭賽,李穎.表沒(méi)食子兒茶素沒(méi)食子酸酯可減輕大鼠骨骼肌缺血再灌注損傷[J].中國(guó)組織工程研究,2021,25(26):4145-4149.
- 38. 夏興莉,廖界仁,任太鈺,馬媛春,王玉花,房婉萍,朱旭君.低溫處理對(duì)茶樹(shù)葉片中γ-氨基丁酸和其他活性成分含量的影響[J].植物資源與環(huán)境學(xué)報(bào),2020,29(05):75-77.
- 37. 喬小燕,操君喜,車(chē)勁,陳棟,劉仲華.基于滋味和香氣成分結(jié)合化學(xué)計(jì)量法鑒別不同貯藏年份的康磚茶[J].現(xiàn)代食品科技,2020,36(09):260-269+299.
- 36. 馬麗娜. 基于QSPR和分子動(dòng)力學(xué)模擬的中藥成分腸吸收預(yù)測(cè)方法研究[D].北京中醫(yī)藥大學(xué),2020.
- 35. 王瑋, 張紀(jì)偉, 趙一帆,等. 瀾滄江流域部分茶區(qū)古茶樹(shù)資源生化成分多樣性的分析[J]. 分子植物育種, 2020(2).
- 34. 黃華林, 李波, 陳海強(qiáng),等. 不同萎凋時(shí)間英紅九號(hào)和黃化英紅九號(hào)紅茶品質(zhì)比較[J]. 山西農(nóng)業(yè)科學(xué), 2019, 047(010):1742-1745.
- 33. 喬小燕, 陳維, 馬成英,等. 不同倉(cāng)儲(chǔ)地康磚茶生化成分比較分析[J]. 廣東茶業(yè), 2019(5):7-10.
- 32. 穆青 陳亞淑 謝筆鈞 楊季芳 陳吉?jiǎng)?孫智達(dá).北極海洋紅球菌B7740(Rhodococcus sp.)產(chǎn)類胡蘿卜素和類異戊二烯醌的抗氧化、抗增殖活性[J].食品科學(xué) 2018 39(11):159-164.
- 31. 萎凋方式對(duì)黃化英紅九號(hào)紅茶品質(zhì)的影響
- 30. 喬小燕, 黃國(guó)資, 王秋霜,等. 連續(xù)化生產(chǎn)線加工過(guò)程中客家炒青綠茶主要品質(zhì)成分的化[J]. 廣東農(nóng)業(yè)科學(xué), 2014, 041(024):91-94.
- 29. 喬小燕, 黃華林, 李波,等. 廣東客家茶樹(shù)種質(zhì)資源兒茶素特性分析[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2019, v.31(01):30-33.
- 28. 杜歡歡, 蔡艷妮, 江海,等. 超高效液相串聯(lián)質(zhì)譜同時(shí)測(cè)定茶葉中的8種有效物質(zhì)[J]. 陜西理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017(33):74-80.
- 27. 湯曉, 倪翠陽(yáng), 王麗英,等. 煮制時(shí)間與二次煮制對(duì)紫娟普洱茶抗氧化性的影響[J]. 食品工業(yè)科技, 2015, 036(008):141-147.
- 26. 蔡爽, 阮成江, 杜維, et al. 沙棘葉片,果肉和種子中黃酮類成分的差異[J]. 植物資源與環(huán)境學(xué)報(bào), 2019(4).
- 25. 歐惠算,張靈枝,王維生.阿姆斯特丹散囊菌對(duì)六堡茶品質(zhì)成分的影響研究[J].中國(guó)茶葉加工,2019(02):45-50.
- 24. 李波, 黃華林, 陳欣,等. 不同季節(jié)黃化英紅九號(hào)紅茶品質(zhì)比較分析[J]. 山東農(nóng)業(yè)科學(xué), 2019.
- 23. 喬小燕, 李崇興, 姜曉輝,等. 不同等級(jí)CTC紅碎茶生化成分分析[J]. 食品工業(yè)科技, 2018, 039(010):83-89.
- 22. 魏琳,盧鳳美,邵宛芳,袁唯.酸茶發(fā)酵過(guò)程中感官品質(zhì)及主要成分變化分析[J].食品研究與開(kāi)發(fā),2019,40(14):69-74.
- 21. 周曉晴, 胡立文, 羅琦,等. 茶葉籽油中茶多酚和兒茶素的測(cè)定[J]. 食品工業(yè)科技, 2019.
- 20. 梅雙, 喬小燕, 陳維,等. 半連續(xù)化生產(chǎn)線和傳統(tǒng)單機(jī)加工客家炒青綠茶主要品質(zhì)成分比較分析[J]. 廣東農(nóng)業(yè)科學(xué), 2019(11).
- 19. 喬小燕, 黃秀新, 黃國(guó)資,等. "二炒"溫度對(duì)傳統(tǒng)客家炒青綠茶品質(zhì)特征的影響[J]. 廣東農(nóng)業(yè)科學(xué), 2015, 042(001):96-99.
- 18. 王婷婷 蔡自建 蒲婉欣 等. 四川綠茶感官品質(zhì)與主要滋味貢獻(xiàn)成分分析[J]. 食品研究與開(kāi)發(fā) 2018 39(24):162-167.
- 17. 喬小燕, 李波, 何梓卿,等. 黃化英紅九號(hào)紅茶體外抗氧化活性分析[J]. 農(nóng)產(chǎn)品質(zhì)量與安全, 2018, 000(005):85-90.
- 16. 胡立文, 周曉晴, 張彬,等. 茶葉籽油中兒茶素類和咖啡因含量測(cè)定[J]. 南昌大學(xué)學(xué)報(bào)(理科版), 2018, 42(002):134-138,146.
- 15. 郭穎, 黃峻榕, 陳琦,等. 茶葉中兒茶素類測(cè)定方法的優(yōu)化[J]. 食品科學(xué), 2016, 37(06):137-141.
- 14. 黃貝, 李龍寶, 吳信潔,等. 油茶花青素還原酶基因克隆和體外功能研究[J]. 茶業(yè)通報(bào), 2018, 040(002):71-76.
- 13. 阮鳴. HPLC法同時(shí)測(cè)定六安瓜片中七種活性成分的含量[J]. 南京曉莊學(xué)院學(xué)報(bào) 2016(6):37-42.
- 12. 王舒叆,王子元,張敏.不同抑菌劑對(duì)青稞鮮濕面中蠟樣芽孢桿菌的抑制作用[J].食品科學(xué),2020,41(13):206-211.
- 11. 張?zhí)鞎? 王祥榮. 真絲織物上茶多酚的高效液相色譜法檢測(cè)[J]. 現(xiàn)代絲綢科學(xué)與技術(shù), 2020(2):4-7.
- 10. 陳紅霞, 李灝, 呂杰,等. 普洱茶渥堆發(fā)酵中活性成分測(cè)定及其相關(guān)性分析[J]. 北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 40(005):84-87.
- 9. 黃淵 岳世陽(yáng) 熊善柏 等. 2種天然抗氧化劑與鰱魚(yú)肌球蛋白的相互作用[J]. 食品科學(xué) 2019 40(04):24-30.
- 8. 陳斌輝, 呂圭源, 金偉鋒,等. 基于正交設(shè)計(jì)和BP神經(jīng)網(wǎng)絡(luò)-遺傳算法多指標(biāo)綜合優(yōu)化茶葉提取工藝[J]. 中國(guó)現(xiàn)代應(yīng)用藥學(xué), 2019, 036(010):1223-1228.
- 7. 孫陶利 周芫宇 黎綾. EGCG-β-LG納米粒的制備及體外穩(wěn)定性研究[J]. 生物化工 2020 006(001):35-37 54.
- 6. 何帥, 王明友, 趙季軍,等. 表沒(méi)食子兒茶素沒(méi)食子酸酯預(yù)防高脂飲食誘導(dǎo)的大鼠肥胖[J]. 西部醫(yī)學(xué), 2020, 032(004):496-499,504.
- 5. 孔敏, 周芳, 黨秀靜,等. 脊髓Toll樣受體4在慢性瘙癢中的作用研究[J]. 重慶醫(yī)學(xué), 2013, 42(9):961-963.
- 4. 李書(shū)靈 陸玨秀 余艾虹 等. 兒茶素對(duì)家兔離體小腸平滑肌收縮功能和機(jī)制的實(shí)驗(yàn)研究[J]. 世界最新醫(yī)學(xué)信息文摘 2018 v.18(28):168-169.
- 3. 蒲首丞. HPLC-DAD測(cè)定大茶樹(shù)和小茶樹(shù)的西湖龍井茶中EGCG的含量[J]. 安徽農(nóng)業(yè)科學(xué) v.42;No.445(12):3714-3715.
- 2. 北拉 蒲首丞 孫梅好. HPLC-DAD測(cè)定不同時(shí)期安吉白茶中EGCG的含量[J]. 中國(guó)農(nóng)業(yè)信息 2016(6):57-57.
- 1. 鈕婧歆 郭晶 郭青 等. EGCG對(duì)富亮氨酸重復(fù)激酶2活性的影響及其作用機(jī)制[J]. 江蘇大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2018 v.28;No.143(05):34-39.
輸入產(chǎn)品批號(hào):
本計(jì)算器可幫助您計(jì)算出特定溶液中溶質(zhì)的質(zhì)量、溶液濃度和體積之間的關(guān)系,公式為:
質(zhì)量 (mg) = 濃度 (mM) x 體積 (mL) x 分子摩爾量 (g/mol)